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In the first paper of this series, we will describe a method, called effective group potentials (EGP), aimed at
simplifying molecular ab initio calculations for large systems involving bulky ligands as long as these ligands
can be supposed to play the role of spectator groups. This method should be applicable to all types of bondings
between active and the spectator parts. The different steps used in the definition of the EGP are closely
related to those used for atomic effective core potentials (ECP) which are commonly used with great success
in ab initio calculations involving heavy atoms.

1. Introduction

There is always a great interest for pushing upward the
feasability limits for ab initio calculations. This impulse is
responsible for the development of new methods and new
programing which have, along with a rapid evolution of
computer technology, profoundly extended the possibilities of
ab initio methods. For large molecules, it has been recently
claimed that calculation times should increase as slowly asN1.3,1

where the basis set sizeN is related to the number of electrons
in the system. Nevertheless, there is still a pressing need for
reducing the computational effort by reducingN , either for
very large molecular systems or to allow a full exploration,
possibly linked to dynamical studies of the potential energy
surface. By large molecular systems, we mean polymers and/
or biomolecules for which ab initio calculations are still a “tour
de force”. By dynamical studies, we mean that the difficult and
cumbersome step of a potential energy surface fit might be
skipped by on-the-fly calculations of both the total energy and
if needed, first and second-order derivatives of the energy with
respect to nuclear coordinates.

Many years ago, the chemical evidence of the small influence
of core electrons on many molecular properties lead to the theory
of effective core potentials (ECP), which has been brought to a
very high level of accuracy. The most recent improvements
follow.

1. The main weakness of ECPs for transition metal atoms,
lanthanides and actinides (i.e., the incorrect reproduction of the
small energy differences between the first excited states and
the ground state) has been satisfactorily solved.2,3

2. It has also been shown that relativistic ECPs which directly
include the largest mean scalar relativistic corrections during
the parametrization step of the effective potential4 are the
simplest way to study large molecular systems with such heavy
atoms. It has been proved in many cases that results are in very
good agreement with the more exact but much more computer

demanding four component methods corresponding to the
Dirac-Fock equation.5,6

3. For atoms on the left side of the Mendeleev classification
where the number of valence electrons is small, effects involving
core polarization and core-valence correlation could not be
included in the original ECP approach which is limited by a
frozen core approximation but different authors have proposed
semiempirical corrections7,8 which enable extremely precise
calculations of ground and excited states to be performed.8-10

Successes of ECP are based upon the separability of core
and valence orbitals, from both energetic and spatial points of
view. Whenever one of these criteria is not fulfilled, applications
may run into troubles. For instance in transition metal atoms,
with a valence configurationndp (n + 1)s1 or ndp-1 (n + 1)s2,
n ) 3-5, the nd orbital describing the open d shell is very
contracted and is localized in the same region of space as the
inner ns andnp shells. The large core ECP, for which these
innerns andnp shells are included in the core, have been shown
to give appreciable differences with respect to all electron
calculations.11

In view of the great successes of ECP methods, it is tempting
to propose another simplification, valid for large molecular
systems. In many cases it has been recognized that chemical
phenomena are well localized in some active and relatively small
part of the molecule. This consideration is the basis for the
classification of molecular systems in families whose members
only differ by some substituent groups around a central atom
or a central group of atoms. Members of the same family must
exhibit similar chemical properties but there still exist differences
which correspond to different electronic structures of the
susbstituent groups. For instance, such notions as “electron rich”
or “electron deficient” groups are very useful for rationalizing
the substituent influence upon the active center. To reproduce
these small variations in ab initio calculations is not an easy
task unless we are able to deal with a complete description of
the molecular system.

Generally the modeling of large molecules is made by a brute
force approach. For instance, a chemical group which is linked
to the active site through a single bond is replaced by a single
hydrogen atom. In the IMMOM method,12 this is done for the
bonded interactions and the nonbonded interactions between
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atoms of the active site and the modeled part of the system are
introduced with a classical molecular mechanics force field.
Applications13,14have shown that the IMMOM approach really
improves the description of the molecule especially if large steric
effects are present. In the approach developed by The´ry et al.,15

the linking bond is replaced by an hybrid orbital frozen in a
specific situation.

For more complicated situations, we can look for an atom or
a small group of atoms which have approximately the same
electronic structure as the original one. Recently, some of us16

have followed the suggestion by Steigerwald and Goddard17 to
replace cyclopentadienyl (Cp) substituent by a Cl atom in
theoretical studies of trihydrides complexes of Nb and Ta
((Cp)2MH3, M ) Ta, Nb). A thorough comparison led us to
the conclusion that even if the optimized structure of the M-H3

part of the (Cp)2M-H3 is not strongly affected, charge distribu-
tions and energy differences between different minima are not
precisely reproduced.

The purpose of this work is to develop a new method called
Effective Group Potential method (EGP), closely related to the
ECP technique. The main goal of our approach will be the
reproduction of subtle electronic differences between different
substituents, which will be out of reach for the simple methods
mentioned above. Preliminary results were recently published.18

2. Effective Potentials for Atomic Cores

To give a clear presentation, we shall first recall the different
approaches used for atomic cores. As usual we start from the
Hartree-Fock approximation which givesatomic orbitalsæi

andorbital energiesεi as solutions of the system of equations:

wheren is the total number of electrons and the Fock operator
F is defined as

and the operatorsJj andKj are

We further split the set of orbitals into activena and frozennf

orbitals (n ) na + nf) and rewrite the Fock operator as

where the sum overj runs only over thena active electrons and
the effective operatorWps is supposed to mimic the interaction
between active and frozen electrons. The supplementary operator
Vad is adequately defined to facilitate the definition ofWps, and
will be explicitly defined in the following sections. Equation 5
is the common starting point for all methods.

2.1. Model Potentials.In the first group of methods,19 Wps

is directly fixed to reproduce the CoulombJj and exchangeKj

operators corresponding to frozen electrons. Introducing a
complete set of orbitals{øp}, Wps is defined as

If we solve eq 1 for thena active electrons only, we must
add the projection operator onto the occupied atomic orbitals
æi to the definition of the Fock operator:

in order to prevent the collapse of the active electron orbitals
onto the frozen orbital space. Since it is impossible to use a
complete basis set in practical calculations, the potentialVad is
chosen to minimize the error due to the use of a finite basis set
{øp}. In many methods, the partial screening of the nuclear
charge by the core electrons is taken into account, by defining

whereZf is the partial nuclear charge corresponding to thenf

frozen electrons. The screened potentialWsc ) -Zf/R +
∑j)1

nf 2Jj, spherically symmetric and exponentially decreasing,
is easily fitted by a small number of terms. The projection
operatorO is used only for the exchange part and the effective
potential is

The truncation error due to the incompleteness of the basis
set used for definingO is then considerably reduced.

2.2. Shape Consistent and Energy Consistent Potentials.
In these methods,Wps is not intrinsically defined by (6) but
extrinsically by conditions imposed on the solutions of (5). In
the shape consistentversions,20,21 the conditions are

εi is the orbital energy of the correspondingreal Valence orbital
æi andæi

ps is a so-calledValence pseudoorbitalwhich fits æi in
the valence region. For each symmetry, the lowestValence
pseudoorbitalis nodeless. The specification of the valence
pseudoorbital is sufficient to fix the form ofWps completely. In
theenergy consistentversion4, no condition is imposed for the
solutions of equation 13 but the latter is solved not only for the
ground state but also for a selection of excited states andWps is
determined to reproduce all-electron results for the energy
differences between ground and excited states. The correspond-
ing valence pseudoorbitals, solutions of eq 13, are also nodeless
and very similar to the orbitals in the shape consistent version.
This is probably due to the specific choice of the analytic form
of the operatorWps.

3. Extension to Groups of Atoms

If the total Hartree-Fock wave function can be split into two
parts, according to the theory of separability of a many electron
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system developed by McWeeny and Kleiner22 and Huzinaga:23

an effective group potential (EGP) for the spectator group
described by the functionΨf can be developed in a way similar
to the model potential approach. If the spectator group is an
atom, the method is exactly equivalent to the atomic core
treatment, with the only difference that the summation of (6)
runs over all the electrons of the spectator group. For instance,
Barandiaran and Seijo24 have used this approach to produce
embedding potentials used in solid-state calculations. If the
spectator group is a molecule, the definition ofVad is not
straightforward. In a first seminal paper, Mejias et al.25 have
extended the model of EGP to a polycentric spectator group in
the case of intermolecular interactions. Sanz and colleagues26-28

have applied the same model to other chemical groups. The
physical effects included are the repulsive energy, through the
action of the projection operatorP and the electrostatic energy.
Since no basis set is used on the spectator group, no charge-
transfer effect is possible. Polarization should be included by a
semiempirical procedure similar to the one used in ECP
calculations.8 In a more rational way, Day et al.29 have proposed
to express the polarization of the spectator group as a super-
position of multiple bond contributions, following the seminal
works by Claverie and collaborators.30 The success of these
methods is therefore rather limited to intermolecular systems
where a complete separation between active and spectator
electrons is justified.

Ohta et al.31 have proposed an effective fragment potential
(EFP) method using localized molecular orbitals in which only
two electrons in the lone pair orbital on the nitrogen atom of
ammonia are active. When used in a van der Waals complex,
like (NH3)2, the results are in fact in very good agrement with
all-electron calculations.

In the same spirit, Peyerimhoff and co-workers32,33 have
developed EFP for molecules like NH3 or H2O, where the short-
range part of the spectator potential is stored in an intermediate
atomic orbital basis set and the longer range of the potential is
reproduced via a distributed multipole expansion. The difficulty
to fit accurately the short range of the potential, at least for the
nonspherical case, is therefore circumvented but the use of
matrix elements stored in an intermediate basis set is quite
involved. These authors are the first34 to mention the possibility
of using the EFP approach beyond the Hartree-Fock level and
they have indeed applied this technique to the study of the
solvent shift effects of the nf π* transition in CH2O surrounded
by n water molecules, each of these molecules being replaced
in the calculation by an EFP.

Colle and Salvetti35,36 proposed the use of nonlocal repre-
sentations of the model potential not only for the exchange part
but also for the short range of the Coulomb operator, the kernel
of which corresponds to localized molecular orbitals on the
spectator fragment. Their method has been first applied to a
simple case, namely the 1s electrons of the Lithium atom, for
which they showed that it is possible to have a completely
nonlocal representation of atomic cores (this has also been
shown independently by Komiha and collaborators37). In a
second case, the separability betweenσ and π electrons in
bipyrrole allows an EFP for theσ skeleton to be determined,
and the authors demonstrate that the EFP is able to reproduce
correctly the transition energies corresponding to the first singlet
and the first triplet excitation in theπ system. SiH4 is the third
and last example and the fragment corresponds to SiH3: the EFP
is built on the core electrons of Si and the six electrons on the

SiH bonds, the active group containing only one SiH bond. The
quality of the comparison between exact (i.e., results obtained
with all electrons in the active set) and EFP results is good,
and shows that EFP might be a useful tool for molecular
calculations.

Katsuki38 has proposed the extension of the model potential
approach to the case of a nonspherical and chemically bonded
spectator group, like COOH in the CH3COOH, CH3CH2COOH
and CH3CH2CH2COOH molecules. He defined four different
EGP corresponding to frozen electrons in different sets of MO
obtained in an open shell calculation of the COOH radical: (1)
the three 1s orbitals on C and O, which corresponds to the usual
definition of a model potential for core electrons; (2) the five
lowest molecular orbitals; (3) the six lowest molecular orbitals;
(4) the nine lowest molecular orbitals.

The performance of these four definitons ofWps has been
tested by comparison with all-electron calculations for therC-C

distance and bond energy corresponding to the link between
the terminal CH3 group and the neighbor C atom. He readily
found that the results obtained are in excellent agrement when
the frozen electrons correspond to core electrons of C and O
atoms, which confirms the validity of ECP approaches. With a
larger number of frozen electrons, the quality of the results
deteriorates rapidly, and the fourth EGP corresponding to 18
frozen electrons and 6 active ones gives rather unreliable results,
at least for CH3COOH and CH3CH2COOH (see Tables III and
VI of 38). Applying the same method, he studied the trimer
(NH3)3 by replacing one ammonia by an EGP, and he found
that the interaction (distance and energy) between the two other
molecules is well reproduced.

In a recent paper, Zhang et al.39 have developed a “pseudo-
bond approach” which explicitly addresses the problem of the
linking atoms in QM/MM methods. Namely, they concentrate
on the breaking of a C-C single bond at the limit between QM
and MM domains.They propose to replace one of the C(sp3)
by a pseudo Cps with seven electrons, a nuclear charge of seven,
the basis set of the fluorine atom and an effective core potential
Veff. The analytic form ofVeff is chosen identical to the usual
forms used for ECP, that is

L is the maximuml of the basis set.ai
/ andbi

/ are parameters
fitted on some characteristics of one of the protoptypes of the
C-C single bond like the ethane molecule (lengths of the C-C
and C-H bonds, C-C-H angles, Mulliken charges and C-C
bond dissociation energy). It has to be pointed out that the
specific form chosen forVeff is not grounded on physical facts
but it is only aimed to simplify the use of the pseudobond
approach in standard ab initio programs. The values ofai

/, bi
/

clearly depend on the methods used for calculating the
characteristics of the ethane molecule. Nevertheless, transfer-
ability to other molecules, and very interestingly to highly polar
ones, is quite successful (see Table III and IV in 39).

EFPs of spectator groups have also been proposed in order
to accurately represent the correct electrostatic and polarization
fields of amino acid residues.40 The EFPs were extracted from
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separate ab initio calculations on the individual components
which are immediate neighbors of the active site of ribonuclease
A, a prototype of enzyme catalyst.

This brief review of earlier work on effective group potentials
(or any of the different names which have been used in the
literature) shows that it is possible to go beyond the usual
partition between active and spectator parts which is verified
for intermolecular cases. In the present paper, we shall present
a different approach which is not derived from the atomic model
potential but forms the shape consistent version of effective
group potentials. Analogous principle to the EGP methodology
has been briefly introduced in ref 41, but neither implementation
nor applications have been done.

4. Determination of Effective Group Potential

As stated in the above section, the two criteria (spatial and
energetic separations) which are satisfied in the case of the ECP
determination cannot be fulfiled for EGP. In general, some of
the energies in the active orbitals set are in the same part of the
spectrum as the inactive ones. Therefore, we must insist on the
localization criterion, which is usually verified since the
definition of the spectator group is based on spatial separation.

In paper 2 we shall present detailed examples corresponding
to different bonding types but in the present outline of the
method we take only one example, a single bonded spectator
group like SiH3. In this case, the inactive electrons correspond
to the core electrons of Si and the six valence electrons
describing the three occupied SiH bonds. There is only one
active electron which is responsible for the bonding between
SiH3 and the connected group. However, the definition of the
EGP on the isolated silyl radical would lead to severe artifacts
since the energy level of the highest singly occupied molecular
orbital (SOMO) for SiH3 is significantly different from the
energy level occupied by this active electron when making a
covalent bond. Actually, the definition is made following three
steps:

1. As a first step, we must choose areferencesystem to fit
the parameters of the EGP. In this reference system, the spectator
group must have characteristics (type of bonding, ionicity, etc.)
close to those which can be expected in the molecular system.
A thorough investigation of thetransferability propertiesof the
EGP (that is its performances when used in various bonding
situations) is presented in the accompanying paper. It is also
worthwhile to point out that in some cases the definition of the
EGP can be achieved independently of any reference system
(see for instance the case of Cp- which will be detailed in a
forthcoming paper42). The simplest reference system we can
think of in this case is the disilane molecule Si2 H6 (see Scheme
1). The molecule is represented by two parts; part A contains
one silyl group and the Si-Si bond and part B contains the
other silyl group. In the molecular EGP representation, part A
will be treated exactly and part B replaced by the EGP potential
which we will call Si#. In so far as the disilane molecule is
used as a test system for our method, it thus seems important
to become familiar with a few geometrical and electronic

features. Disilane hasD3d symmetry, and its electronic ground
state is1A1g. The HF optimized geometry is shown on the
scheme of the molecule. According to the Mulliken population
analysis, Si atoms are depopulated, and H atoms present an
anionic character. The center of symmetry implies that the
pyramidal SiH3 fragment remains neutral. Six MOs essentially
contribute to the Si-H bonds, while the seventh MO, the
HOMO, is strongly Si-Si bonding. The energy of the occupied
valence MO, their symmetry, and their contribution to the
bonding are reported in Table 1. We first perform Hartree-
Fock calculations of the reference system in basis set{øq} of
dimensionnref, which defines the reference Fock operatorFref

and molecular orbitals{φi}:

To achieve spatial separation, we localize the molecular orbitals
{φi}, and in this symmetric case, we use a simple rotation
transformation (any type of localization methods like Boys43

or Edmiston and Ruedenberg44 ones would lead essentially to
the same result). In the localized basis set{æi}, Fref is

For the occupied orbitals we thus obtain three SiH orbitals
localized on the left side, three SiH orbitals localized on the
right side and a Si-Si orbital. In the following steps, we will
try to build an EGP which reproduces the three localized SiH
orbitals on A and the Si-Si orbital as well as possible, which
we will call reference localized orbitals.

2. In the second step, we define thetruncated basis set{fp}
of dimensionntr, which is composed of the basis set corre-
sponding to the left side A and a smaller set centered on the
right side B. There are no theoretically justified arguments for
choosing the basis set functions on part B. Since we shall try
to reproduce as closely as possible the localized orbitals on A
obtained in the first step, a natural choice was made for all the
truncated basis sets we have investigated, that is on the same
position as the silicon atom of part B. This reduced system is
notedR (see Scheme 2). The choice of this truncated set is a
very important step for the determination of EGPs since we
shall use the same basis set onR in further molecular
calculations (this is a strict condition for the applicability of
the method).

SCHEME 1 TABLE 1: Mulliken Population Analysis and HF Energies
(hartree) of the MO of Si2H6 in Different Representationsa

SiH3Si#

D3d Si2H6 C3V SiH3R EGP1 EGP2 SiH3...Hb

Si: 3.538 Si: 3.534 Si: 3.421 Si: 3.535 Si: 3.408
H: 1.154 H: 1.155 H: 1.199 H: 1.155 H: 1.127
SiH3: 7.000 X: 0.999 Si#: 0.982 Si#: 1.000 H: 1.210

σSiSi
+ -0.40761 σSiSi -0.44471 -0.40058 -0.44483 -0.36211

πSiH3

- -0.47722 πSiH3 -0.49071 -0.44850 -0.49088 -0.52055
πSiH3

+ -0.50419
σSiH3

+ -0.68691 σSiH3 -0.73111 -0.69427 -0.73078 -0.73984
σSiH3

- -0.76633

a Comparison is made for each step of the EGP extraction. Data
given in the SiH3R column correspond to the delocalized MVPOs.
The SiH3R and SiH3Si# molecules have the same geometry as for the
corresponding atoms of Si2H6. b The Si‚‚‚H distance is lengthened to
the Si-Si distance in Si2H6.

Fref ) ∑
i)1

nref

εi|φi〉〈φi| (18)

Fref ) ∑
i,j)1

nref

εij|æi〉〈æj| (19)
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This second step is analogous to the definition of valence
pseudoorbitals in the shape consistent version in the ECP
determination. We shall callmolecularValence pseudoorbitals
(MVPO, hereafter notedφ′j) the orbitals built in the truncated
basis set which are as close as possible to the localized molecular
orbitals{æi} of the reference calculation. MVPOs are obtained
in three steps: (a) calculate the elements of theS matrix

(b) diagonalizeS, and (c) select thenact eigenvectorsφ′j
corresponding to thenact eigenvalues closest to one.

Two criteria will then fix the choice of the basis set onR
which is defined iteratively: (a) optimize the exponents and
principal quantum numbers of the truncated basis set to obtain
overlap between reference active orbitals and MVPOs close to
1 and (b) check the charge distribution which shall be as close
as possible to the charge distribution of the reference calculation
for part A.

The Gaussian functions on part B are chosen in such a way
that the MVPOs expressed in the reduced basis set are as close
as possible to the four reference orbitals. As stated before, the
definition of the truncated basis set is very important. It is closely
related to the nature of the chemical bonding between active
and spectator fragments. In the present case of SiH3 linked by
a covalent bond, we have found that one s (exponent 0.17) and
one p (exponent 0.16) functions are sufficient for a good
reproduction of the reference localized MOs. Their exponent
are tuned in order to reproduce the charge transfer between part
A and R. Although the Mulliken atomic charges are strongly
dependent upon the basis set, due to the arbitrary partitioning
scheme, we found that this criterion yields MVPOs in close
agreement with the reference localized MOs.

Since the original Fock operatorFref is defined in the reference
basis set, we go back to the reference basis set by a projection
procedure:

and construct the Fock operator corresponding to the truncated
system for MVPOsψj:

Diagonalization of theFtr operator yields delocalized MVPOs
and their one-electron energies. They are systematically analyzed
in order to check that there is no discrepancy between MVPOs
and reference MOs. The two lowest delocalized MVPOs have
eitherσSiH3 or πSiH3 character. Their energies, either-0.73111
or -0.49071 au, are intermediate betweenσSiH3

+ and σSiH3

- or
πSiH3

+ andπSiH3

- MOs of Si2 H6, respectively, while the HOMO
(-0.44471 au) is 40 mh above theσSiSi orbital. The good
agreement of the Mulliken population and of the MO shapes

and energies indicates that the choice of the reduced system
and basis set is suitable.

At the end of this iterative process, the MVPOsφ′j will play
the same role as the valence pseudoorbitals used in the
determination of ECP's in the shape-consistent approach.

3. In the third step, the effective Fock operatorFeff is defined
as the operator, restricted to thenact active electrons which
should reproduce the solutions of the truncated Fock operator
Ftr. This effective Fock operatorFeff is

h is the core Hamiltonian. It contains the kinetic energy operator,
the nuclear attraction operator (eventually taking into account
ECPs), and atomic ECPs if needed.

For numerical convenience as detailed in the next paragraph,
the EGP operatorWEGP is expressed in a nonlocal form:

The EGP nuclei contribution is included inh such thatWEGP

decreases exponentially. The exponents and locations of the
Gaussian functionsgλ and the coefficientscλ,µ are determined
to minimize the norm of the difference betweenFtr andFeff, as
proposed by Nicolas and Durand.45,46

As recalled above, a calculation involving SiH3 and a one
electron pseudo-silicon with a small basis set would yield a poor
description of the electronic properties of the SiH3 fragment
and of the Si-Si bonding. The role ofWEGP is to fill up the
difference between the reference molecule and the truncated
system. Various attempts for choosing the EGP (i.e., exponents
and locations ofgλ) were made, but we finally adopted two
main rules. The first is to keep a local character for the EGP
operator in order to ensure its transferability. The second is to
define the Gaussian Cartesian functions ofWEGP as an even-
tempered atomic basis sets, that is by choosing the exponents
in geometric progression.47,48In the first attempt (EGP1) all basis
functionsgλ are located on the Si atom of part B. The set of
exponents is defined a priori and not optimized. Thus, the
operators may be almost linearly dependent. A canonical
orthonormalization with an adequate threshold is needed in order
to remove these dependencies.45 The center of the six s and six
p Gaussian functions that defineWEGP(Table 2) coincides with
the position of the pseudo-silicon atom. As shown in Table 1
(EGP1 column), this EGP does not fit either the Mulliken atomic
populations or the delocalized MVPO energies exactly. All the
occupied MOs are systematically shifted by approximately 0.04

SCHEME 2

Spq ) ∑
i)1

n

〈fp|æi〉〈æi|fq〉 p, q) 1, ntr (20)

|ψj〉 ) ∑
i)1

nact

|æi〉〈æi|φ′j〉 j ) 1, nact (21)

Ftr ) ∑
i,j)1

nact

|ψj〉〈ψj|Fref|ψi〉〈ψi| (22)

TABLE 2: s, p, and d Parameters Used for the
Determination of the Nonlocal Pseudopotentials for Si# EGP1
and Si# EGP2

a

SiSi#

s and p s and p d
H
s

3.750000 3.750000 0.800000 3.750000
1.875000 1.875000 1.875000
0.937500 0.937500 0.937500
0.468750 0.468750 0.468750
0.234375 0.234375 0.234375
0.110000 0.110000 0.110000

a Si# EGP1: the Gaussian functions are located on the pseudo-silicon
atom. Si# EGP2: the Gaussian functions are located on all the atoms of
the SiH3R molecule in the optimal geometry of Si2H6.

Feff ) h + WEGP+ ∑
j)1

nact

(2Jj - Kj) (23)

WEGP) ∑
λ,µ)1

npot

cλ,µ|gλ〉〈gµ| (24)

202 J. Phys. Chem. A, Vol. 105, No. 1, 2001 Poteau et al.



hartree, and the difference between the Mulliken populations
is rather small. In a second step,we have attempted to improve
the description of MVPOs. We have built anotherWEGPoperator
(hereafter called EGP2) developed on many centers. To obtain
the best overlap between all the truncated basis functions and
the gλ set, they coincide exactly with the positions of all the
atoms of the SiH3 Si# molecule. Their exponents (6s 6p 1d on
Si, 6s on each H, 6s 6p on Si#) are displayed in Table 2. As
can be checked in Table 1, the fit is almost perfect. The
delocalized MVPO energies are reproduced with an average
deviation of 0.003 au. The EGP2 has a tempting behavior, but
further investigations are needed before concluding in its favor.

5. Geometry Optimization

5.1. Methodological Details.The main advantage of the
nonlocal formulation37 of WEGP is that the EGP integrals are
expressed as products of ordinary overlap integrals of the form:

where|øi〉 and|øj〉 are Gaussian-type orbitals centered on atoms
I and J, while the Gaussian functions|gn〉 and |gm〉 may be
centered on two different sites N and M, respectively. The EGPs
are determined at the Hartree-Fock level of theory. They are
intended to simulate HF results. However, the method was
checked on some cases at a post-HF level (MP2). Geometry
optimizations have been carried out with the Berny method
which requires an analytical gradient. We therefore implemented
an explicit calculation of the analytical first derivatives into
Gaussian98.49 This is a generalization of the routines written
by Klotz50 to the anisotropic and multicentric cases. The nonzero
first derivatives of the integral productω are the derivatives
with respect to the coordinates of atoms I and J and to the centers
N and M. The derivatives of the pseudopotential integrals can
be written without explicitly calculating the derivatives of the
EGP by using the translational invariance of the matrix ele-
ment:51,52

In the case of the elementω, the contributions to the gradient
with respect to coordinatesRI, RN, RM, andRJ are respectively:

The generalization to thenth analytical derivatives can be done
in an analogous way. However, we have not yet implemented
the calculation of the second derivatives. This work is in
progress. Nevertheless, force constants and harmonic vibrational
frequencies can be determined by single numerical differentia-
tion since the analytical first derivatives are available.

5.2. Test of the Si# EGPs.Since EGPs reproduce reasonably
well the effective MOs, an open question is: is the optimized
geometry of the SiH3 molecular group adequately reproduced
by the presence of the Si# EGP? To answer this question, a
local optimization was performed, with the Si-Si# bond length
constrained. It yields a geometry very close to the optimal one
of Si2H6 (Table 3). The Si-H bond length is 0.005 Å longer
with the pseudopotential Si# EGP1, while the HSiSi angle is
2.4° higher. This result is very promising, and we expect the
PES to be comparable in both theoretical treatments. It might
be demanding, but a reasonable estimation of the force constants
would be interesting. For this purpose, the variation of the
energy as a function of various geometrical deformations was
computed. Two deformations were considered, in the framework
of theC3V symmetry group: the stretching of the Si-H bonds,
and the variation of the HSiSi angles. Only one SiH3 molecular
fragment was deformed in the case of Si2H6. These data are
plotted in Figure 1. It can be seen that the curves are almost
superposable in both cases. As could be assumed from the
geometry optimization results, the energy curves indicating the
angular dependency are slightly out of phase. However, their
curvatures are identical. The visual concordance is confirmed

SCHEME 3 TABLE 3: Geometrical Parameters for the D3d Si2H6 and
the C3WSiH3 Si# Structures (Distances in Angstroms and
Angles in Degrees)a

SiH3Si#

Si2H6 EGP1 EGP2 SiH3...H

Si-Sib 2.348 2.348* 2.348* 2.348*

Si-H 1.476 (3.16) 1.481 (3.07) 1.442 (4.06) 1.462 (3.36)
HSiSi 110.1 (0.75) 112.5 (0.83) 108.4 (2.07) 105.4 (0.61)

a Force constants are indicated in parentheses (stretching mode in
mdyn‚Å-1 and bending mode in mdyn‚Å‚rad-2). b Si...H distance in
the case of SiH3...H. The asterisk * means that the geometrical parameter
is frozen throughout optimization.

Figure 1. Comparison of the energy (in hartree) of Si2H6 (full lines)
and SiH3Si#, EGP1 (dashed lines) according to geometrical deforma-
tions: (a) variation of the energy as a function of the SiH distance
(angstroms); (b) variation of the energy as a function of the HSiSi angle
(degrees). In both cases,C3V symmetry is maintained.

ω ) 〈øi|gn〉〈gm|øj〉 ) 〈øi|WEGP
nm |øj〉

∂

∂RN
〈øi|gn〉 ) 〈øi|∂gn

∂RN
〉 ) -〈∂øi

∂RI
|gn〉

〈∂øi

∂RI
|WEGP

nm |øj〉, -〈∂øi

∂RI
|WEGP

nm |øj〉, -〈øi|WEGP
nm |∂øj

∂RJ
〉, and

〈øi|WEGP
nm |∂øj

∂Rj
〉
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by the computation of the force constants, reported in Table 3.
Plotting the curves shows the good behavior of the operator
beyond the equilibrium position of the active part (see Figure
1).

This one-center Si# EGP1 has some interesting properties:
quite a good reproduction of the molecular orbitals and their
energies, an ability to reproduce the potential energy surface
without a significant loss in precision. As concerns the second
operator (Si# EGP2), the optimized geometrical parameters are
in fair agreement with those of Si2H6: the Si-H bond length
and the HSiSi angle are 0.034 Å and 1.7° smaller, respectively.
The Si# EGP2 seems to have better properties than the Si# EGP1,
even if the geometry is slightly less precise. Nevertheless, the
stretching and bending force constants are not comparable (see
Table 3). The error on the bending force constant is 150%. The
transferability to other molecules will be a crucial test in order
to discriminate among the two EGP's, even if the latter result
casts suspicion on the Si# EGP2. These results have been
compared with a SiH4 model in which one Si-H distance is
lengthened to the Si-Si bond length. Indeed, as is done in finite
cluster calculations, the saturation of the SiH3 fragment with
an H atom is a solution for avoiding the problem of dangling
bonds on surfaces. As can be seen in Tables 1 and 3, the
stretched Si-H bond becomes polar, and the agreement of the
monoelectronic energy spectrum and of the optimized geometry
of SiH3 with respect to the Si2H6 result is not satisfactory. We
conclude that this treatment introduces artifacts and that our
method is more convenient.

6. Conclusion

In this first paper, we have presented a general methodology
to derive effective group potentials in order to simplifiy ab initio
calculations, by reducing both the number of active electrons
and the size of the basis set. Our approach is general and could
be used whatever the connection between active and spectator
parts of the molecule would be. The way to derive EGP
parameters is very close to the determination of effective core
potentials (ECP) in their shape consistent version. The most
important step is the definition of modified valence pseudo-
orbitals (MVPO), which play the same role as valence pseudo-
orbitals in the derivation of ECP. In this step, the choice of a
small atomic basis set centered on the spectator group is very
determinant for the success of the method. The final form of
EGP (expressed as a linear combination of nonlocal projection
operators) is simple enough to be easily introduced in any
conventional ab initio program, eventually including calculations
of gradients and higher order derivatives. The derivation of an
EGP for the silyl group has been used as a test example. We
have shown that the Si# EGP1 fairly reproduces electronic
populations, molecular orbitals, geometrical parameters, and
force constants of the defined active part of disilane. It could
be used for describing silicon clusters boundaries in order to
avoid the artifacts usually introduced by hydrogenating them.
Molecular applications, for silyl and other groups, will be
detailed in paper 2, in which the transferabilty and robustness
of the EGP method will be tested.
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